Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Small Methods ; : e2300594, 2023 Jun 13.
Article in English | MEDLINE | ID: covidwho-20237904

ABSTRACT

How to develop highly informative serology assays to evaluate the quality of immune protection against coronavirus disease-19 (COVID-19) has been a global pursuit over the past years. Here, a microfluidic high-plex immuno-serolomic assay is developed to simultaneously measure50 plasma or serum samples for50 soluble markers including 35proteins, 11 anti-spike/receptor binding domian (RBD) IgG antibodies spanningmajor variants, and controls. This assay demonstrates the quintuplicate test in a single run with high throughput, low sample volume, high reproducibilityand accuracy. It is applied to the measurement of 1012 blood samples including in-depth analysis of sera from 127 patients and 21 healthy donors over multiple time points, either with acute COVID infection or vaccination. The protein analysis reveals distinct immune mediator modules that exhibit a reduced degree of diversity in protein-protein cooperation in patients with hematologic malignancies or receiving B cell depletion therapy. Serological analysis identifies that COVID-infected patients with hematologic malignancies display impaired anti-RBD antibody response despite high level of anti-spike IgG, which can be associated with limited clonotype diversity and functional deficiency in B cells. These findings underscore the importance to individualize immunization strategies for these high-risk patients and provide an informative tool to monitor their responses at the systems level.

2.
Cell Rep ; 42(1): 111895, 2023 01 31.
Article in English | MEDLINE | ID: covidwho-2227691

ABSTRACT

T cell-B cell interaction is the key immune response to protect the host from severe viral infection. However, how T cells support B cells to exert protective humoral immunity in humans is not well understood. Here, we use COVID-19 as a model of acute viral infections and analyze CD4+ T cell subsets associated with plasmablast expansion and clinical outcome. Peripheral helper T cells (Tph cells; denoted as PD-1highCXCR5-CD4+ T cells) are significantly increased, as are plasmablasts. Tph cells exhibit "B cell help" signatures and induce plasmablast differentiation in vitro. Interestingly, expanded plasmablasts show increased CXCR3 expression, which is positively correlated with higher frequency of activated Tph cells and better clinical outcome. Mechanistically, Tph cells help B cell differentiation and produce more interferon γ (IFNγ), which induces CXCR3 expression on plasmablasts. These results elucidate a role for Tph cells in regulating protective B cell response during acute viral infection.


Subject(s)
COVID-19 , Programmed Cell Death 1 Receptor , Humans , Programmed Cell Death 1 Receptor/metabolism , CD4-Positive T-Lymphocytes , COVID-19/metabolism , T-Lymphocytes, Helper-Inducer , Plasma Cells/metabolism , Receptors, CXCR5 , Receptors, CXCR3/metabolism
3.
EBioMedicine ; 83: 104208, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2035962

ABSTRACT

BACKGROUND: Better understanding of the association between characteristics of patients hospitalized with coronavirus disease 2019 (COVID-19) and outcome is needed to further improve upon patient management. METHODS: Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) is a prospective, observational study of 1164 patients from 20 hospitals across the United States. Disease severity was assessed using a 7-point ordinal scale based on degree of respiratory illness. Patients were prospectively surveyed for 1 year after discharge for post-acute sequalae of COVID-19 (PASC) through quarterly surveys. Demographics, comorbidities, radiographic findings, clinical laboratory values, SARS-CoV-2 PCR and serology were captured over a 28-day period. Multivariable logistic regression was performed. FINDINGS: The median age was 59 years (interquartile range [IQR] 20); 711 (61%) were men; overall mortality was 14%, and 228 (20%) required invasive mechanical ventilation. Unsupervised clustering of ordinal score over time revealed distinct disease course trajectories. Risk factors associated with prolonged hospitalization or death by day 28 included age ≥ 65 years (odds ratio [OR], 2.01; 95% CI 1.28-3.17), Hispanic ethnicity (OR, 1.71; 95% CI 1.13-2.57), elevated baseline creatinine (OR 2.80; 95% CI 1.63- 4.80) or troponin (OR 1.89; 95% 1.03-3.47), baseline lymphopenia (OR 2.19; 95% CI 1.61-2.97), presence of infiltrate by chest imaging (OR 3.16; 95% CI 1.96-5.10), and high SARS-CoV2 viral load (OR 1.53; 95% CI 1.17-2.00). Fatal cases had the lowest ratio of SARS-CoV-2 antibody to viral load levels compared to other trajectories over time (p=0.001). 589 survivors (51%) completed at least one survey at follow-up with 305 (52%) having at least one symptom consistent with PASC, most commonly dyspnea (56% among symptomatic patients). Female sex was the only associated risk factor for PASC. INTERPRETATION: Integration of PCR cycle threshold, and antibody values with demographics, comorbidities, and laboratory/radiographic findings identified risk factors for 28-day outcome severity, though only female sex was associated with PASC. Longitudinal clinical phenotyping offers important insights, and provides a framework for immunophenotyping for acute and long COVID-19. FUNDING: NIH.


Subject(s)
COVID-19 , COVID-19/complications , Creatinine , Female , Hospitalization , Humans , Male , Phenotype , Prospective Studies , RNA, Viral , SARS-CoV-2 , Severity of Illness Index , Troponin , Post-Acute COVID-19 Syndrome
4.
Nat Immunol ; 23(4): 632-642, 2022 04.
Article in English | MEDLINE | ID: covidwho-1751737

ABSTRACT

Although inhibition of T cell coinhibitory receptors has revolutionized cancer therapy, the mechanisms governing their expression on human T cells have not been elucidated. In the present study, we show that type 1 interferon (IFN-I) regulates coinhibitory receptor expression on human T cells, inducing PD-1/TIM-3/LAG-3 while inhibiting TIGIT expression. High-temporal-resolution mRNA profiling of IFN-I responses established the dynamic regulatory networks uncovering three temporal transcriptional waves. Perturbation of key transcription factors (TFs) and TF footprint analysis revealed two regulator modules with different temporal kinetics that control expression of coinhibitory receptors and IFN-I response genes, with SP140 highlighted as one of the key regulators that differentiates LAG-3 and TIGIT expression. Finally, we found that the dynamic IFN-I response in vitro closely mirrored T cell features in acute SARS-CoV-2 infection. The identification of unique TFs controlling coinhibitory receptor expression under IFN-I response may provide targets for enhancement of immunotherapy in cancer, infectious diseases and autoimmunity.


Subject(s)
COVID-19 , Interferon Type I , Gene Regulatory Networks , Humans , Interferon Type I/genetics , Receptors, Antigen, T-Cell/metabolism , Receptors, Immunologic/genetics , SARS-CoV-2 , T-Lymphocytes
5.
Nat Commun ; 13(1): 440, 2022 01 21.
Article in English | MEDLINE | ID: covidwho-1641960

ABSTRACT

Dysregulated immune responses against the SARS-CoV-2 virus are instrumental in severe COVID-19. However, the immune signatures associated with immunopathology are poorly understood. Here we use multi-omics single-cell analysis to probe the dynamic immune responses in hospitalized patients with stable or progressive course of COVID-19, explore V(D)J repertoires, and assess the cellular effects of tocilizumab. Coordinated profiling of gene expression and cell lineage protein markers shows that S100Ahi/HLA-DRlo classical monocytes and activated LAG-3hi T cells are hallmarks of progressive disease and highlights the abnormal MHC-II/LAG-3 interaction on myeloid and T cells, respectively. We also find skewed T cell receptor repertories in expanded effector CD8+ clones, unmutated IGHG+ B cell clones, and mutated B cell clones with stable somatic hypermutation frequency over time. In conclusion, our in-depth immune profiling reveals dyssynchrony of the innate and adaptive immune interaction in progressive COVID-19.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Gene Expression Profiling/methods , Immunity, Innate/immunology , SARS-CoV-2/immunology , Single-Cell Analysis/methods , Adaptive Immunity/drug effects , Adaptive Immunity/genetics , Aged , Antibodies, Monoclonal, Humanized/therapeutic use , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/genetics , Cells, Cultured , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Immunity, Innate/drug effects , Immunity, Innate/genetics , Male , RNA-Seq/methods , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , COVID-19 Drug Treatment
6.
J Immunol ; 206(12): 2785-2790, 2021 06 15.
Article in English | MEDLINE | ID: covidwho-1248085

ABSTRACT

Protective immunity against COVID-19 likely depends on the production of SARS-CoV-2-specific plasma cells and memory B cells postinfection or postvaccination. Previous work has found that germinal center reactions are disrupted in severe COVID-19. This may adversely affect long-term immunity against reinfection. Consistent with an extrafollicular B cell response, patients with severe COVID-19 have elevated frequencies of clonally expanded, class-switched, unmutated plasmablasts. However, it is unclear whether B cell populations in individuals with mild COVID-19 are similarly skewed. In this study, we use single-cell RNA sequencing of B cells to show that in contrast to patients with severe COVID-19, subjects with mildly symptomatic COVID-19 have B cell repertoires enriched for clonally diverse, somatically hypermutated memory B cells ∼30 d after the onset of symptoms. This provides evidence that B cell responses are less disrupted in mild COVID-19 and result in the production of memory B cells.


Subject(s)
B-Lymphocytes/immunology , COVID-19/immunology , Cohort Studies , Humans , SARS-CoV-2/immunology
7.
Immunity ; 54(5): 1083-1095.e7, 2021 05 11.
Article in English | MEDLINE | ID: covidwho-1179682

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening post-infectious complication occurring unpredictably weeks after mild or asymptomatic SARS-CoV-2 infection. We profiled MIS-C, adult COVID-19, and healthy pediatric and adult individuals using single-cell RNA sequencing, flow cytometry, antigen receptor repertoire analysis, and unbiased serum proteomics, which collectively identified a signature in MIS-C patients that correlated with disease severity. Despite having no evidence of active infection, MIS-C patients had elevated S100A-family alarmins and decreased antigen presentation signatures, indicative of myeloid dysfunction. MIS-C patients showed elevated expression of cytotoxicity genes in NK and CD8+ T cells and expansion of specific IgG-expressing plasmablasts. Clinically severe MIS-C patients displayed skewed memory T cell TCR repertoires and autoimmunity characterized by endothelium-reactive IgG. The alarmin, cytotoxicity, TCR repertoire, and plasmablast signatures we defined have potential for application in the clinic to better diagnose and potentially predict disease severity early in the course of MIS-C.


Subject(s)
COVID-19/immunology , COVID-19/pathology , SARS-CoV-2/immunology , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/pathology , Adolescent , Alarmins/immunology , Autoantibodies/immunology , CD8-Positive T-Lymphocytes/immunology , Child , Child, Preschool , Cytotoxicity, Immunologic/genetics , Endothelium/immunology , Endothelium/pathology , Humans , Killer Cells, Natural/immunology , Myeloid Cells/immunology , Plasma Cells/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Severity of Illness Index
8.
bioRxiv ; 2020 Oct 31.
Article in English | MEDLINE | ID: covidwho-915987

ABSTRACT

While inhibition of T cell co-inhibitory receptors has revolutionized cancer therapy, the mechanisms governing their expression on human T cells have not been elucidated. Type 1 interferon (IFN-I) modulates T cell immunity in viral infection, autoimmunity, and cancer, and may facilitate induction of T cell exhaustion in chronic viral infection 1,2 . Here we show that IFN-I regulates co-inhibitory receptors expression on human T cells, inducing PD-1/TIM-3/LAG-3 while surprisingly inhibiting TIGIT expression. High-temporal-resolution mRNA profiling of IFN-I responses enabled the construction of dynamic transcriptional regulatory networks uncovering three temporal transcriptional waves. Perturbation of key transcription factors on human primary T cells revealed both canonical and non-canonical IFN-I transcriptional regulators, and identified unique regulators that control expression of co-inhibitory receptors. To provide direct in vivo evidence for the role of IFN-I on co-inhibitory receptors, we then performed single cell RNA-sequencing in subjects infected with SARS-CoV-2, where viral load was strongly associated with T cell IFN-I signatures. We found that the dynamic IFN-I response in vitro closely mirrored T cell features with acute IFN-I linked viral infection, with high LAG3 and decreased TIGIT expression. Finally, our gene regulatory network identified SP140 as a key regulator for differential LAG3 and TIGIT expression. The construction of co-inhibitory regulatory networks induced by IFN-I with identification of unique transcription factors controlling their expression may provide targets for enhancement of immunotherapy in cancer, infectious diseases, and autoimmunity.

SELECTION OF CITATIONS
SEARCH DETAIL